机器学习-回归模型-欠拟合和过拟合

作者:cgl1079743846

1. 什么是欠拟合和过拟合

先看三张图片,这三张图片是线性回归模型 拟合的函数和训练集的关系

  1. 第一张图片拟合的函数和训练集误差较大,我们称这种情况为 欠拟合
  2. 第二张图片拟合的函数和训练集误差较小,我们称这种情况为 合适拟合
  3. 第三张图片拟合的函数完美的匹配训练集数据,我们称这种情况为 过拟合

  

类似的,对于逻辑回归同样也存在欠拟合和过拟合问题,如下三张图

  

2. 如何解决欠拟合和过拟合问题

欠拟合问题,根本的原因是特征维度过少,导致拟合的函数无法满足训练集,误差较大。

欠拟合问题可以通过增加特征维度来解决

过拟合问题,根本的原因则是特征维度过多,导致拟合的函数完美的经过训练集,但是对新数据的预测结果则较差。

解决过拟合问题,则有2个途径

  1. 减少特征维度; 可以人工选择保留的特征,或者模型选择算法
  2. 正则化; 保留所有的特征,通过降低参数θ的值,来影响模型

3. 正则化

回到前面过拟合例子, h(x) = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4

 

从图中可以看出,解决这个过拟合问题可以通过消除特征x3和x4的影响, 我们称为对参数的惩罚, 也就是使得参数θ3, θ4接近于0。

最简单的方法是对代价函数进行改造,例如

这样在求解最小化代价函数的时候使得参数θ3, θ4接近于0。

正则化其实就是通过对参数θ的惩罚来影响整个模型

4. 线性回归使用正则化

前面几篇文章中,线性回归的代价函数J(θ)表达式如下

正则化后,代价函数J(θ)表达式如下,注意j从1开始

注意λ值不能设置过大,否则会导致求出的参数除了θ0,其它θ1,θ2 ... θn值约等于0,导致预测函数h(x)出现极大偏差

我们的目标依然是求J(θ)最小值,我们还是用梯度下降算法正规方程求解最小化J(θ)

1. 梯度下降算法(注意需要区分θ0和其它参数的更新等式)

2. 正规方程

对于正规方程来,需要修改等式如下

系数λ 所乘的矩阵为 (n+1)*(n+1)维

5. 逻辑回归使用正则化

和线性回归模型类型,逻辑回归也可以通过正则化来解决过拟合问题。

逻辑回归的代价函数J(θ)表达式如下

正则化逻辑回归的代价函数,是在等式后加上一项,注意j从1开始

 

同样的用梯度下降算法求解最小化J(θ),也需要做改变

不同的是逻辑回归模型中的预测函数 h(x)和线性回归不同

发表评论

3个评论

  • ingwfj

    除了试某种阶数的函数是否欠拟合或过拟合,如何确定函数的阶数?

    2018-01-01 15:35:31回复

  • u014487025

    图片好熟悉,跟吴恩达的课件好像好像

    2016-10-06 21:40:15回复

  • cgl1079743846

    回复u014487025: 就是从 coursea上面学的,记录一下,学习笔记

    2016-10-07 16:30:10回复

我要留言×

技术领域:

我要留言×

留言成功,我们将在审核后加至投票列表中!

提示x

机器学习知识库已成功保存至我的图谱现在你可以用它来管理自己的知识内容了

删除图谱提示×

你保存在该图谱下的知识内容也会被删除,建议你先将内容移到其他图谱中。你确定要删除知识图谱及其内容吗?

删除节点提示×

无法删除该知识节点,因该节点下仍保存有相关知识内容!

删除节点提示×

你确定要删除该知识节点吗?