深度学习(六)caffe入门学习

作者:hjimce

caffe入门学习

原文地址http://blog.csdn.net/hjimce/article/details/48933813

作者:hjimce

本文主要讲解caffe的整个使用流程,适用于初级入门caffe,通过学习本篇博文,理清项目训练、测试流程。初级教程,高手请绕道。

我们知道,在caffe编译完后,在caffe目录下会生成一个build目录,在build目录下有个tools,这个里面有个可执行文件caffe,如下图所示:


有了这个可执行文件我们就可以进行模型的训练,只需要学会调用这个可执行文件就可以了,这便是最简单的caffe学习,不需要对caffe底层的东西懂太多,只需要会调参数,就可以构建自己的网络,然后调用这个可执行文件就可以进行训练,当然如果你不仅仅是调参数,而且想要更改相关的算法,那就要深入学习caffe的底层函数调用了,这个以后再讲。本篇博文仅适合于刚入门学习caffe,高手请绕道。废话不多说,回归正题:

一、总流程

完成一个简单的自己的网络模型训练预测,主要包含几个步骤:

1、数据格式处理,也就是把我们的图片.jpg,.png等图片以及标注标签,打包在一起,搞成caffe可以直接方便调用的文件。后面我将具体讲解如何打包自己的数据,让caffe进行调用。

2、编写网络结构文件,这个文件的后缀格式是.prototxt。就是编写你的网络有多少层,每一层有多少个特征图,输入、输出……。看个例子,看一下caffe-》example-》mnist-》lenet_train_test.prototxt。这个便是手写字体网络结构文件了,我们需要根据自己的需要学会修改这个文件:

<span style="font-size:18px;">name: "LeNet"
layer {
  name: "mnist"
  type: "Data"  //data层
  top: "data"
  top: "label"
  include {
    phase: TRAIN   //训练阶段
  }
  transform_param {
    scale: 0.00390625   //对所有的图片归一化到0~1之间,也就是对输入数据全部乘以scale,0.0039= 1/255
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"  //训练数据图片路径
    batch_size: 64    //每次训练采用的图片64张,min-batch
    backend: LMDB
  }
}
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST   //测试
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_test_lmdb" //测试数据图片路径
    batch_size: 100
    backend: LMDB
  }
}
layer {
  name: "conv1"   //卷积神经网络的第一层,卷积层
  type: "Convolution"  //这层操作为卷积
  bottom: "data"   //这一层的前一层是data层
  top: "conv1"   //
  param {
    lr_mult: 1   
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20    //定义输出特征图个数
    kernel_size: 5    //定义卷积核大小
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"      //池化层,这一层的操作为池化
  bottom: "conv1"   //这一层的前面一层名字为:conv1
  top: "pool1"
  pooling_param {
    pool: MAX   //最大池化
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 50
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}</span>

上面的网络结构,定义的data层,就是定义我们输入的训练数据的路径、图片变换等。

3、网络求解文件,这个文件我们喜欢把它取名为:solver.prototxt,这个文件的后缀格式也是.prototxt。这个文件主要包含了一些求解网络,梯度下降参数、迭代次数等参数……,看下手写字体的solver.prototxt文件:

<span style="font-size:18px;">net: "examples/mnist/lenet_train_test.prototxt"  //定义网络结构文件,也就是我们上一步编写的文件

test_iter: 100 

test_interval: 500 //每隔500次用测试数据,做一次验证

base_lr: 0.01     //学习率
momentum: 0.9   //动量参数
weight_decay: 0.0005   //权重衰减系数

lr_policy: "inv"   //梯度下降的相关优化策略
gamma: 0.0001
power: 0.75

display: 100

max_iter: 10000   //最大迭代次数

snapshot: 5000    //每迭代5000次,保存一次结果
snapshot_prefix: "examples/mnist/lenet" //保存结果路径

solver_mode: GPU   //训练硬件设备选择GPU还是CPU</span>

这个文件的输入就是我们前面一步定义的网络结构。

4、编写网络求解文件后,我们可以说已经完成了CNN网络的编写。接着我们需要把这个文件,作为caffe的输入参数,调用caffe可执行文件,进行训练就可以了。具体的命令如下:

./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt

这样就完事了,程序就开始训练了。上面的第一个参数caffe,就是我们在编译caffe,生成的可执行文件:



然后solver就是我们在步骤3编写的solver文件了,只要在ubuntu终端输入上面的命令,就可以开始训练了。

回想一下文件调用过程:首先caffe可执行文件,调用了solver.prototxt文件,而这个文件又调用了网络结构文件lenet_train_test.prototxt,然后lenet_train_test.prototxt文件里面又会调用输入的训练图片数据等。因此我们如果要训练自己的模型,需要备好3个文件:数据文件lmdb(该文件包含寻数据)、网络结构lenet_train_test.prototxt、求解文件solver.prototxt,这几个文件名随便,但是文件后缀格式不要随便乱改。把这三个文件放在同一个目录下,然后在终端输入命令,调用caffe就可以开始训练了。

二、相关细节

1、lmdb数据格式生成

caffe输入训练图片数据我比较喜欢用lmdb格式,好像还有另外一种格式leveldb,这个具体没用过,这里主要讲解lmdb格式数据的制作。其实在caffe-》example-》imagenet文件夹下面的一些脚本文件可以帮助我们快速生产相关的caffe所需的数据。


create_imagenet.sh这个文件可以帮我们快速的生成lmdb的数据格式文件,因此我们只需要把这个脚本文件复制出来,稍作修改,就可以对我们的训练图片、标注文件进行打包为lmdb格式文件了。制作图片的脚本文件如下:

<span style="font-size:18px;">#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirs

EXAMPLE=.          # 生成模型训练数据文化夹
TOOLS=../../build/tools                              # caffe的工具库,不用变
DATA=.                  # python脚步处理后数据路径

TRAIN_DATA_ROOT=train/  #待处理的训练数据图片路径
VAL_DATA_ROOT=val/      # 带处理的验证数据图片路径



# Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=true   #图片缩放
if $RESIZE; then
  RESIZE_HEIGHT=256
  RESIZE_WIDTH=256
else
  RESIZE_HEIGHT=0
  RESIZE_WIDTH=0
fi

if [ ! -d "$TRAIN_DATA_ROOT" ]; then
  echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
  echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet training data is stored."
  exit 1
fi

if [ ! -d "$VAL_DATA_ROOT" ]; then
  echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
  echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet validation data is stored."
  exit 1
fi

echo "Creating train lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --shuffle \
    $TRAIN_DATA_ROOT \
    $DATA/train.txt \     #标签训练数据文件
    $EXAMPLE/train_lmdb

echo "Creating val lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --shuffle \
    $VAL_DATA_ROOT \
    $DATA/val.txt \    #验证集标签数据
    $EXAMPLE/val_lmdb

echo "Done."</span>
同时我们需要制作如下四个文件:

1、文件夹train,用于存放训练图片

2、文件夹val,用于存放验证图片

3、文件train.txt,里面包含这每张图片的名称,及其对应的标签。

<span style="font-size:18px;">first_batch/train_female/992.jpg	1
first_batch/train_female/993.jpg	1
first_batch/train_female/994.jpg	1
first_batch/train_female/995.jpg	1
first_batch/train_female/996.jpg	1
first_batch/train_female/997.jpg	1
first_batch/train_female/998.jpg	1
first_batch/train_female/999.jpg	1
first_batch/train_male/1000.jpg	0
first_batch/train_male/1001.jpg	0
first_batch/train_male/1002.jpg	0
first_batch/train_male/1003.jpg	0
first_batch/train_male/1004.jpg	0
first_batch/train_male/1005.jpg	0
first_batch/train_male/1006.jpg	0
first_batch/train_male/1007.jpg	0
first_batch/train_male/1008.jpg	0</span>

上面的标签编号:1,表示女。标签:0,表示男。

4、文件val.txt,同样这个文件也是保存图片名称及其对应的标签。

这四个文件在上面的脚本文件中,都需要调用到。制作玩后,跑一下上面的脚本文件,就ok了,跑完后,即将生成下面两个文件夹:


文件夹下面有两个对应的文件:


制作完后,要看看文件的大小,有没有问题,如果就几k,那么正常是每做好训练数据,除非你的训练图片就几张。

二、训练

1、直接训练法

#!/usr/bin/env sh
TOOLS=../cafferead/build/tools
$TOOLS/caffe train --solver=gender_solver.prorotxt  -gpu all  #加入 -gpu 选项

-gpu 可以选择gpu的id号,如果是 -gpu all表示启用所有的GPU进行训练。

2、采用funing-tuning 训练法

$TOOLS/caffe train --solver=gender_solver.prorotxt -weights gender_net.caffemodel #加入-weights

加入-weights,这个功能很好用,也经常会用到,因为现在的CNN相关的文献,很多都是在已有的模型基础上,进行fine-tuning,因为我们大部分人都缺少训练数据,不像谷歌、百度这些土豪公司,有很多人专门做数据标注,对于小公司而言,往往缺少标注好的训练数据。因此我们一般使用fine-tuning的方法,在少量数据的情况下,尽可能的提高精度。我们可以使用:-weights 选项,利用已有的模型训练好的参数,作为初始值,进行继续训练。

三、调用python接口

训练完毕后,我们就可以得到caffe的训练模型了,接着我们的目标就预测,看看结果了。caffe为我们提供了方便调用的python接口函数,这些都在模块pycaffe里面。因此我们还需要知道如何使用pycaffe,进行测试,查看结果。下面是pycaffe的预测调用使用示例:

# coding=utf-8
import os
import numpy as np
from matplotlib import pyplot as plt
import cv2
import shutil
import time

#因为RGB和BGR需要调换一下才能显示
def showimage(im):
	if im.ndim == 3:
		im = im[:, :, ::-1]
	plt.set_cmap('jet')
	plt.imshow(im)
	plt.show()

#特征可视化显示,padval用于调整亮度
def vis_square(data, padsize=1, padval=0):
	data -= data.min()
	data /= data.max()

	#因为我们要把某一层的特征图都显示到一个figure上,因此需要计算每个图片占用figure多少比例,以及绘制的位置
	n = int(np.ceil(np.sqrt(data.shape[0])))
	padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
	data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))

	# tile the filters into an image
	data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
	data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])

	showimage(data)


#设置caffe源码所在的路径
caffe_root = '../../../caffe/'
import sys
sys.path.insert(0, caffe_root + 'python')
import caffe




#加载均值文件
mean_filename='./imagenet_mean.binaryproto'
proto_data = open(mean_filename, "rb").read()
a = caffe.io.caffe_pb2.BlobProto.FromString(proto_data)
mean  = caffe.io.blobproto_to_array(a)[0]

#创建网络,并加载已经训练好的模型文件
gender_net_pretrained='./caffenet_train_iter_1500.caffemodel'
gender_net_model_file='./deploy_gender.prototxt'
gender_net = caffe.Classifier(gender_net_model_file, gender_net_pretrained,mean=mean,
					   channel_swap=(2,1,0),#RGB通道与BGR
					   raw_scale=255,#把图片归一化到0~1之间
					   image_dims=(256, 256))#设置输入图片的大小


#预测分类及其可特征视化
gender_list=['Male','Female']
input_image = caffe.io.load_image('1.jpg')#读取图片

prediction_gender=gender_net.predict([input_image])#预测图片性别
#打印我们训练每一层的参数形状
print 'params:'
for k, v in gender_net.params.items():
	print 'weight:'
	print (k, v[0].data.shape)#在每一层的参数blob中,caffe用vector存储了两个blob变量,用v[0]表示weight
	print 'b:'
	print (k, v[1].data.shape)#用v[1]表示偏置参数
#conv1滤波器可视化
filters = gender_net.params['conv1'][0].data
vis_square(filters.transpose(0, 2, 3, 1))
#conv2滤波器可视化
'''filters = gender_net.params['conv2'][0].data
vis_square(filters[:48].reshape(48**2, 5, 5))'''
#特征图
print 'feature maps:'
for k, v in gender_net.blobs.items():
	print (k, v.data.shape);
	feat = gender_net.blobs[k].data[0,0:4]#显示名字为k的网络层,第一张图片所生成的4张feature maps
	vis_square(feat, padval=1)





#显示原图片,以及分类预测结果
str_gender=gender_list[prediction_gender[0].argmax()]
print str_gender

plt.imshow(input_image)
plt.title(str_gender)
plt.show()

上面的接口,同时包含了pycaffe加载训练好的模型,进行预测及其特征可视化的调用方法。

**********************作者:hjimce   时间:2015.10.6  联系QQ:1393852684   原创文章,转载请保留原文地址、作者等信息***************

发表评论

5个评论

  • zh_jessica

    非常通俗易懂,谢谢!很有用!

    2017-06-12 11:03:56回复

  • hjimce

    [reply]yinsua[/reply]嗯

    2017-06-02 11:06:31回复

  • Cjianxiong

    学习了,很有用,谢谢了

    2017-04-26 19:05:39回复

  • lyy_buu

    谢谢,非常有用!!

    2017-03-23 14:43:17回复

  • lzie110

    谢谢!学习了!

    2016-09-17 12:00:14回复

我要留言×

技术领域:

我要留言×

留言成功,我们将在审核后加至投票列表中!

提示x

人工智能开发框架知识库已成功保存至我的图谱现在你可以用它来管理自己的知识内容了

删除图谱提示×

你保存在该图谱下的知识内容也会被删除,建议你先将内容移到其他图谱中。你确定要删除知识图谱及其内容吗?

删除节点提示×

无法删除该知识节点,因该节点下仍保存有相关知识内容!

删除节点提示×

你确定要删除该知识节点吗?