解密Google Deepmind AlphaGo围棋算法:真人工智能来自于哪里?

作者:songrotek

go

2016年1月28日,Google Deepmind在Nature上发文宣布其人工智能围棋系统AlphaGo历史性的战胜人类的职业围棋选手!这条重磅新闻无疑引起了围棋界和人工智能界的广泛关注!3月份AlphaGo对阵李世石的比赛更将引起全人类的目光!

是什么使围棋算法产生了质的飞跃?要知道,在之前最好的围棋程序也只能达到业余人类棋手的水平。是真的人工智能产生了吗?

对于大多数人来说,大家都知道1997年的“深蓝”计算机战胜了人类的国际象棋冠军卡斯帕罗夫,但是大家都不会认为“深蓝”真正拥有了人工智能,道理非常简单:国际象棋(当然围棋也是)每一步都是可见的,在一个确定性的棋局下,仅有有限个走法。这有限个走法中必然有一个最优的。一个基本的想法就是对棋局进行预测,遍历每一种走法直到一方胜出,然后回退计算每一个可能赢的概率,最后使用概率最高的作为最优的走法。“深蓝”就做了这么件事,暴力穷举所有的步子,然后找最优!赢了人类,但没有智能,因为整个算法完全就是人工设计的一个算法,根本看不到智能在哪里。

显然围棋理论上也可以暴力破解,但是问题就在于围棋的可走的步子太多了,以至于目前的计算性能根本做不到暴力破解。这也就是为什么围棋是挡在人工智能面前的一个重大挑战。

要使围棋程序战胜人类顶尖高手,只有依靠真正的人工智能!

对围棋有了解的朋友都知道下围棋需要对整个棋局有直观的理解,这就是围棋困难的地方。除非计算机真正理解了棋局,才有可能有大局观,才有可能下出真正的好棋!

那么,问题来了:

AlphaGo 有真正的人工智能吗?

我的回答:

AlphaGo有真人工智能,虽然还不完美!

那么

AlphaGo的真人工智能在哪里?

我的回答:

就在深度神经网络之中

一切的答案都在Google Deepmind在Nature上发表的文章:
Mastering the Game of Go with Deep Neural Networks and Tree Search论文链接

本文将分析AlphaGo的这篇Nature文章,去解密真人工智能的奥秘!

AlphaGo的”大脑“是怎样的

这里写图片描述

深度神经网络是AlphaGo的”大脑“,我们先把它当做一个黑匣子,有输入端,也有输出端,中间具体怎么处理先不考虑。那么AlphaGo的”大脑“实际上分成了四大部分:

  • Rollout Policy 快速感知”脑“:用于快速的感知围棋的盘面,获取较优的下棋选择,类似于人观察盘面获得的第一反应,准确度不高
  • SL Policy Network 深度模仿”脑“:通过人类6-9段高手的棋局来进行模仿学习得到的脑区。这个深度模仿“脑”能够根据盘面产生类似人类棋手的走法。
  • RL Policy Network 自学成长“脑”:以深度模仿“脑”为基础,通过不断的与之前的“自己”训练提高下棋的水平。
  • Value Network 全局分析“脑”:利用自学成长“脑”学习对整个盘面的赢面判断,实现从全局分析整个棋局。

所以,AlphaGo的“大脑”实际上有四个脑区,每个脑区的功能不一样,但对比一下发现这些能力基本对于人类棋手下棋所需的不同思维,既包含局部的计算,也包含全局的分析。其中的Policy Network用于具体每一步棋的优劣判断,而Value Network则对整个棋局进行形势的判断。

network

而且很重要的是,AlphaGo提升棋力首先是依靠模仿,也就是基于深度模仿“脑”来进行自我水平的提升。这和人类的学习方式其实是一模一样的。一开始都是模仿别人的下法,然后慢慢的产生自己的下法。

那么这些不同的脑区的性能如何呢?

  • 快速感知“脑”对下棋选择的判断对比人类高手的下棋选择只有24.2%的正确率
  • 深度模仿“脑”对下棋选择的判断对比人类高手的下棋选择只有57.0%的正确率,也就是使用深度模仿“脑”,本身就有一半以上的几率选择和人类高手一样的走法。
  • 自学成长“脑”在经过不断的自学改进之后,与深度模仿“脑”进行比赛,竟然达到80%的胜利。这本质上说明了通过自我学习,在下棋水平上取得了巨大的提升。
  • 全局分析“脑”使用自学成长“脑”学习训练后,对全局局势的判断均方差在0.22~0.23之间。也就是有大约80%的概率对局面的形势判断是对的。这是AlphaGo能够达到职业棋手水准的关键所在。

从上面的分析可以看到AlphaGo的不同“脑区”的强大。具体每个大脑是怎么学习的在之后的小节分析,我们先来看看有了这些训练好的大脑之后AlphaGo是如何下棋的。

AlphaGo 是如何下棋的?

在分析AlphaGo是如何下棋之前,我们先来看看一下人类棋手会怎么下棋:

  • Step 1:分析判断全局的形势
  • Step 2:分析判断局部的棋局找到几个可能的落子点
  • Step 3:预测接下来几步的棋局变化,判断并选择最佳的落子点。

那么,AlphaGo在拥有强大的神经网络”大脑“的基础上采用蒙特卡洛树搜索来获取最佳的落子点,本质上和人类的做法是接近的。

the way

首先是采用蒙特卡洛树搜索的基本思想,其实很简单:

多次模拟未来的棋局,然后选择在模拟中选择次数最多的走法

AlphaGo具体的下棋基本思想如下(忽略掉一些技术细节比如拓展叶节点):

  • Step 1:基于深度模仿“脑” 来预测未来的下一步走法,直到L步。
  • Step 2:结合两种方式来对未来到L的走势进行评估,一个是使用全局分析“脑”进行评估,判断赢面,一个是使用快速感知“脑”做进一步的预测直到比赛结束得到模拟的结果。综合两者对预测到未来L步走法进行评估。
  • Step 3:评估完,将评估结果作为当前棋局下的下一步走法的估值。即给一开始给出的下一步走法根据未来的走向进行评估。
  • Step 4 :结合下一步走法的估值和深度模仿脑进行再一次的模拟,如果出现同样的走法,则对走法的估值取平均(蒙特卡洛的思想在这里)

反复循环上面的步骤到n次。然后选择选择次数最多的走法作为下一步。

说的有点复杂,简单的讲就是综合全局和具体走法的计算分析,对下一步棋进行模拟,找到最佳的下一步。对步子的选择,既要依赖于全局分析“脑”的判断,也需要深度模仿“脑”的判断。

分析到这里,大家就可以理解为什么在AlphaGo与Fan Hui的比赛中,有一些AlphaGo的落子并不仅仅考虑局部的战术,也考虑了整体的战略。

知道了AlphaGo的具体下棋方法之后,我们会明白让AlphaGo棋力如此之强的还是在于AlphaGo的几个深度神经网络上。

所以,让我们看看AlphaGo的大脑是怎么学习来的。

AlphaGo是如何学习的?

AlphaGo的学习依赖于深度学习Deep Learning和增强学习Reinforcement Learning,合起来就是Deep Reinforcement Learning。这实际上当前人工智能界最前沿的研究方向。

关于深度学习和增强学习,本文不做详细的介绍。深度神经网络是由巨量的参数形成的一个多层的神经网络,输入某一种类型的数据,输出某一种特定的结果,根据输出的误差,计算并更新神经网络的参数,从而减少误差,从而使得利用神经网络,特定的输入可以得到特定想要的结果。

以深度模拟“脑”为例。这个实际上是一个12层的神经网络。输入主要是整个棋盘的19*19的信息(比如黑棋的信息,白棋的信息,空着的信息,还有其他一些和围棋规则有关的信息一共48种)。输出要求是下一步的落子。那么Google Deepmind拥有3000万个落子的数据,这就是训练集,根据输出的误差就可以进行神经网络的训练。训练结束达到57%的正确率。也就是说输入一个棋盘的棋局状态,输出的落子有一半以上选择了和人类高手一样的落子方式。从某种意义上讲,就是这个神经网络领悟了棋局,从而能够得到和人类高手一样的落子方法。

换另一个角度看会觉得AlphaGo很可怕,因为这个神经网络本来是用在计算机视觉上的。神经网络的输入是棋盘,就类似为AlphaGo是看着棋盘学习的。

接下来的自学成长“脑”采用深度增强学习(deep reinforcement learning)来更新深度神经网络的参数。通过反复和过去的“自己”下棋来获得数据,通过输赢来判断好坏,根据好坏结果计算策略梯度,从而更新参数。通过反复的自学,我们看到自学成长“脑”可以80%胜率战胜深度模仿“脑”,说明了这种学习的成功,进一步说明自学成长“脑”自己产生了新的下棋方法,形成了自己的一套更强的下棋风格。

说到这,大家可以看到真人工智能来源于神经网络,具体神经网络的参数为什么能够表现出智能恐怕无人知晓?智能到底是什么还需要等待答案。

深度神经网络是人工智能的黎明!

发表评论

10个评论

  • jiangjunshow

    我最近在写一系列的人工智能教程,通俗易懂,无需很高的数学基础,教程也力求风趣幽默,倡导快乐学习,欢迎大家给出意见和批评!http://blog.csdn.net/jiangjunshow/article/details/77338485

    2017-09-20 10:56:24回复

  • Black_Joker1

    感谢分享。博主对AlphaGo的功能结构抽象的很到位,不过感觉具体训练逻辑及如何利用MCST整合各模型描述得不够准确。

    2017-04-26 10:27:13回复

  • willism

    另外,想问一下最后自我增长“脑”起的作用是什么?

    2016-03-30 20:34:17回复

  • songrotek

    回复willism: 自学成长“脑”这部分作用很大啊。只靠人类的棋谱训练是无法达到这么高水平的,关键还在自学习。增强学习是目的就是给神经网络提供不限量的计算样本。AlphaGo的创造性也依靠这部分!

    2016-03-31 00:37:31回复

  • willism

    有用,看过论文之后,发现博主说的很有道理

    2016-03-30 15:55:09回复

加载更多
我要留言×

技术领域:

我要留言×

留言成功,我们将在审核后加至投票列表中!

提示x

人工智能机器学习知识库已成功保存至我的图谱现在你可以用它来管理自己的知识内容了

删除图谱提示×

你保存在该图谱下的知识内容也会被删除,建议你先将内容移到其他图谱中。你确定要删除知识图谱及其内容吗?

删除节点提示×

无法删除该知识节点,因该节点下仍保存有相关知识内容!

删除节点提示×

你确定要删除该知识节点吗?